Chemists have traditionally called the study of collections of molecules physical chemistry.
Communities of people have some properties which are the result of individuals but only become apparent in a collective group such as the wave of a crowd moving in unison. Likewise communities of chemical substances have group properties such as pressure, electric current, and freezing temperature. Physical chemists study such properties then use them to help understand individual events on the molecular scale. Atoms and molecules are so small that our senses are generally unable to directly learn what occurs at that size. So the use of these bulk properties provides a chest of tools to supplement our senses.
To gain an appreciation for the size of molecules, this investigation attempts to measure the thickness of some of the thinner objects in our world, soap bubbles and oil films. This first procedure was described by Benjamin Franklin (b1706, d1790, portrait at right→). Franklin wrote in 1773 a letter to a friend, mentioning having read in Pliny's Natural History (Gaius Plinius Secundus, b23AD, d79, better known as Pliny the Elder) a description of the practice of early seaman of stilling the waves in a storm by pouring oil into the sea. Franklin described confirming that at the pond at Clapham Common in England:
At length at Clapman where there is, on the common, a large pond, which I observed to be one day very rough with the wind, I fetched out a cruet of oil, and dropped a little of it on the water. I saw it spread itself with surprising swiftness upon the surface.. the oil, though not more than a teaspoonful, produced an instant calm over a space several yards square, which spread amazingly and extended itself gradually until it reached the leeside, making all that quarter of the pond, perhaps half an acre, as smooth as a looking glass.
Franklin wrote he was struck by it with particular surprise.
Franklin realized that the spreading of the oil could reveal crucial information about be size of atoms which scientists of the time suspected were the smallest constituents of the oil. As the oil spread more widely, the layer grew thinner. But the oil layer can be no thinner than the size of its constituent particles. By measuring the original volume of oil which is essentially conserved during the experiment, and then dividing by the area of the oil sheen, one could compute the largest possible size of an atom. A century later, the physicist Lord Rayleigh (John William Strutt, b1842, d1919 who won the 1904 Nobel Prize in Physics for othe matters) use this procedure to measure the size of a molecule. In the first decades of the 20th Century, Irwing Langmuir (b1881, d1957) did systematic studies on floating monolayers on water to learn about molecular shape and contortions, a study which led to his receiving the 1932 Nobel Prize in Chemistry.
Today we can gain similar understanding by repeating Franklin's experiment. The amount of oil must be tiny enough and the water surface large enough that the oil can spread without encountering the edge of the water. To measure the thickness of the oil layer, the surface of the water should be as calm and smooth as possible to avoid puddling. In addition a means is needed to determine the extent of the spread of the oil.
The second procedure involves using the wave nature of light to estimate the thickness of a soap bubble. Light is a transverse electromagnetic wave. Both the electric field and the magnetic field increase and decrease perpendicular to the direction of the light's direction. When the light encounters the electric field (due to surface electrons) in some materials, the interaction causes the emission (i.e., reflection) of a similar light wave. Depending on the surface, this may be a mirror like reflection where the angle of reflected light matches the incidence angle, or scattered widely such as by the surface of white paper.
A bubble has both an inside and outside surface, both of which may reflect light. If the bubble has the thickness equal half the wavelength of the light, the reflected waves from the inside will be one wavelength behind those reflected from the outside surfaces. These waves will match and so will combine in such a way that the amplitudes of their electric and magnetic fields will add together making a light wave twice as bright as either separate reflection. But in the surfaces are a quarter wavelength apart, the light wave reflected from the inside will be a half wavelength behind that reflected from the outside surface. The waves will be exact opposites so that their combined wave intensities nearly cancel leaving almost no reflected light. White light is a combination of all colors, such that each color of is a slightly different wavelength extending from red light with a wavelength of about 7 x 10-7m to violet light with a shorter wavelength of about 4 x 10-7m. The result is that soap bubbles, depending on their thicknesses, may cause bright constructive combinations for some light colors and the destructive combination of light of other colors. If the bubble is too thin, there may be no constructive reflection and so the surface will seem to disappear with no reflection at all.
to next experiment: Size of Atoms and Molecules
to menu for Nanochemistry, Colloidal & Physical Chemistry
to ie-Chemistry menu
to site menu